

VITAMIN K ANTAGONISTS IN PATIENTS WITH BREAKTHROUGH STROKES ON DOACS

Alexander P. Benz, Hamilton (Canada) and Mainz (Germany)

X I have a relationship with a for-profit and/or a not-for-profit organization to disclose:

Company Name	Direct financial payments/honoraria	Membership on advisory boards or speakers' bureaus	Funded grants or clinical trials	Patents on a drug, product or device	All other investments or relationships
Bristol-Myers Squibb	x (lecture fees)				
AstraZeneca	x (lecture fees)				
Boston Scientific					x (participation in an educational program)

X I am a cardiologist (i.e., not a stroke neurologist).

Warfarin for stroke prevention

16TH WORLD STROKE CONGRESS

Organization

Meta-analysis of RCTs: warfarin vs. placebo/control in atrial fibrillation (AF)

Hart RG, et al. Ann Intern Med. 2007 Jun 19;146(12):857-67.

DOACs vs. warfarin in patients with AF

Individual patient data meta-analysis (IPDMA) of RCTs (COMBINE-AF)

Efficacy (DOAC vs. warfarin)

Outcome	Hazard ratio (95% CI)			
Ischemic stroke	0.81 (0.74-0.89)			
Systemic embolism	0.71 (0.51-0.99)			
All-cause mortality	0.92 (0.87-0.97)			

Safety (DOAC vs. warfarin)

Outcome	Hazard ratio (95% CI)			
Any bleeding	0.86 (0.74-1.00)			
Major bleeding	0.86 (0.74-1.01)			
Intracranial bleeding	0.45 (0.37-0.56)			

Compared to warfarin, direct oral anticoagulants (DOACs)

- reduce ischemic stroke, systemic embolism and death
- provide a modest (and statistically non-significant) reduction in any and major bleeding
- markedly reduce intracranial bleeding

Carnicelli AP, et al. Circulation. 2022 Jan 25;145(4):242-255.

DOACs vs. warfarin in patients with AF

Subgroup analyses in patients with prior stroke

Subgroup analysis (year)	DOAC	Outcome	Event rate (%/year) on DOAC	Event rate (%/year) on warfarin	Hazard ratio (95% CI)
RE-LY ¹ (2010)	Dabigatran 150 mg BID	lschemic/ unknown stroke	1.75	1.75	1.00 (0.65-1.54)
ROCKET AF ² (2012)	Rivaroxaban 20 mg QD	lschemic/ unknown stroke	2.34	2.27	1.03 (0.82-1.30)
ARISTOTLE ³ (2012)	Apixaban 5 mg BID	lschemic/ unknown stroke	1.92	2.23	0.86 (0.60-1.22)
ENGAGE-AF TIMI 48 ⁴ (2016)	Edoxaban 60 mg QD	Ischemic stroke	2.04	2.13	0.96 (0.73-1.25)

¹ Diener HC, et al. Lancet Neurol.2010 Dez;9(12):1157-1163. ² Hankey GJ, et al. Lancet Neurol. 2012 Apr;11(4):315-22 ³.Easton JD, et al. Lancet Neurol. 2012 Jun;11(6):503-11. ⁴ Rost NS, et al. Stroke. 2016 Aug;47(8):2075-82.

"Breakthrough stroke": stroke while on oral anticoagulation

<u>Recent</u> breakthrough stroke – very high risk of recurrent stroke

Observational studies

IPDMA of DOAC/warfarin RCTs (COMBINE AF)

Seiffge DJ, et al. Lancet Neurol. 2024 Apr;23(4):404-417.

Benz AP, et al. Eur Heart J. 2023 May 21;44(20):1807-1814.

"Breakthrough stroke": current practice patterns

Antithrombotic treatment

2024 OCTOBER 23 - 26 ABU DHABI, UAE 16TH WORLD STROKE CONGRESS

Mechanical treatment

- Left atrial appendage occlusion: (currently) unproven
- Carotid filters: not available

Polymeris AA, et al. J Neurol Neurosurg Psychiatry. 2022 Jun;93(6):588-598.

"Breakthrough stroke" on a DOAC: DOAC (continuation) or switch to VKA?

Meta-analysis: observational studies (no RCTs available)

	DOAC same		Warfarin		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl
Duong 2023	34	623	4	51	5.8%	0.70 [0.26, 1.88]
Hsieh 2023	105	1105	39	208	50.5%	0.51 [0.36, 0.71]
lp 2023	149	1207	18	93	29.4%	0.64 [0.41, 0.99]
Paciaroni 2022	44	527	10	58	14.4%	0.48 [0.26, 0.91]
Total (95% CI)		3462		410	100.0%	0.55 [0.43, 0.70]
Total events	332		71			
Heterogeneity: Tau ² = 0.00; Chi ² = 1.03, df = 3 (P = 0.79); i ² = 0% Test for overall effect: Z = 4.92 (P < 0.00001)						

Risk Ratio

Risk Ratio DOAC same Warfarin Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl Duong 2023 623 0.76 [0.24, 2.43] 28 3 51 9.7% Hsieh 2023 48 1105 27 208 56.3% 0.33 [0.21, 0.52] lp 2023 42 1207 6 93 18.5% 0.54 [0.24, 1.24] Paciaroni 2022 527 58 15.5% 0.64 [0.26, 1.59] 29 5 Total (95% CI) 3462 410 100.0% 0.44 [0.30, 0.63] 41 Total events 147 Heterogeneity: Tau² = 0.01; Chi² = 3.18, df = 3 (P = 0.36); I² = 6% 0.2 Test for overall effect: Z = 4.43 (P < 0.00001)

"Hemorrhagic events": 56% reduction with DOAC vs. VKA

All-cause mortality: 46% reduction with DOAC vs. VKA

World Stroke Organization

Mota Telles JP, et al. Int J Stroke. 2024 Aug 9:17474930241270443.

Limitations of available evidence: risk of bias

2024 OCTOBER 23 - 26 ABU DHABI, UAE 16TH WORLD STROKE CONGRESS

Meta-analysis: observational studies

Study	Bias due to confounding	Bias in selection of participants	Bias in classification of interventions	Bias due to deviations from intended interventions	Bias due to missing data	Bias in measurement of outcomes	Bias in selection of the reported result	Overall risk of bias judgment
Polymeris ¹⁸								
Duong ¹³								
Seiffge ¹⁷								
Hsieh ¹⁴								
Paciaroni ¹⁶								
lp ¹⁵								

Risk of bias summary for non-randomized studies (ROBINS-I):

Low; Moderate; Serious; Critical.

Mota Telles JP, et al. Int J Stroke. 2024 Aug 9:17474930241270443.

DOACs are <u>inferior</u> to VKA in select populations

Randomized clinical trials

Clinical scenario	Trial (year)	Outcome	Patients with event on DOAC	Patients with event on VKA	Hazard ratio (95% CI)	
Mechanical heart	RE-ALIGN ¹ (2013)	Stroke	5.4%	0	Not estimable	
valve	PROACT-Xa ² (2023)	Stroke	3.3%	0	Not estimable	
Antiphospholipid syndrome	TRAPS ³ (2018)	Stroke	6.8%	0	Not estimable	
	Ordi-Ros et al. ⁴ (2019)	Stroke	9.5%	0	Not estimable	
Rheumatic heart disease- associated AF	INVICTUS⁵ (2022)	Stroke	3.7%	2.6%	1.54 (1.10-2.16)	

¹ Eikelboom JW, et al. N Engl J Med. 2013 Sep 26;369(13):1206-14. ² Wang TY, et al. NEJM Evid. 2023; 2(7)

³ Pengo V, et al. Blood. 2018 Sep 27;132(13):1365-1371.

⁴ Ordi-Ros J, et al. Ann Intern Med. 2019 Nov 19;171(10):685-694. ⁵ Connolly SJ, et al. N Engl J Med. 2022 Sep 15;387(11):978-988.

World Stroke Organization

"Breakthrough stroke" on a DOAC – another chance for VKA?

Limitations of DOAC therapy

DOAC	VKA
 Fixed dosing for all patients – "one size fits all" 	 Dose titration – optimal effect
 Absence of monitoring of adherence and anticoagulation effect 	 Monitoring of adherence and anticoagulation effect
 Single-factor inhibition 	 Multi-factor inhibition
 Short drug elimination half-lives combined with relatively long dosing intervals 	 Long half-lives
 Pharmacogenetic differences in DOAC metabolism 	

SWITCH-AF – 2024 OCTOBER 23 - 26 VKA vs. DOAC after "breakthrough stroke" 16TH WORLD STROKE CONGRESS

A randomized clinical trial

Multicenter, phase IV, prospective, randomized, open-label, two-arm study with blinded-endpoint evaluation

Hypothesis:

In patients with AF and breakthrough stroke on DOAC therapy, switching to a VKA, compared to DOAC of choice, reduces the risk of stroke or systemic embolism.

Primary efficacy outcome: Stroke or systemic embolism Primary safety outcome: ISTH major bleeding

Coordination: Population Health Research Institute, McMaster University, Hamilton, Canada

SWITCH-AF – 2024 OCTOBER 23 - 26 VKA vs. DOAC after "breakthrough stroke" ^{16TH WORLD STROKE CONGRESS}

Eligibility criteria

Inclusion criteria:

- 1. Written informed consent provided.
- 2. Age >18 years.
- 3. Documented history of AF or atrial flutter.
- Ischemic stroke while on a DOAC within 30 days prior to enrollment identified on imaging.
- 5. In the opinion of the investigator, it is safe to initiate oral anticoagulation with either a VKA or a DOAC within 48 hours of randomization.

Exclusion criteria:

- There is strong evidence for the qualifying stroke event to be associated with permanent discontinuation of DOAC therapy (for any reason)
- 2. Patient is unable or unwilling to take oral anticoagulation
- 3. History of intracranial bleeding.
- 4. Patient is on chronic hemodialysis or likely to need renal replacement therapy during the course of the trial.

- 1. DOACs offer clear advantages over VKA therapy for most patients with AF.
- Some patients suffer a "breakthrough stroke" while on a DOAC
 → (very) high risk of recurrent stroke
- 3. The optimal treatment strategy after "breakthrough stroke" on DOAC is uncertain.
- 4. Observational studies associating VKA use following "breakthrough stroke" with large increases in adverse outcomes are at (serious) risk of bias.
- 5. A randomized trial of VKA vs. DOAC in this population is warranted and in preparation (SWITCH-AF).

